Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Investigating the evolution ofEscherichia coliin microgravity offers valuable insights into microbial adaptation to extreme environments. Here the effects of simulated microgravity (SµG) on gene expression and genome evolution ofE. coliREL606, a strain evolved terrestrially for 35 years, is explored. The transcriptomic changes for glucose-limited and glucose-replete conditions over 24 h illustrate that SµG increased the expression of genes involved in stress response, biofilm, and metabolism. A greater number of differentially expressed genes related to the general stress response (GSR) and biofilm formation is observed in simulated microgravity cultures under glucose-limited conditions in comparison to glucose-replete conditions. Longer term SµG culture under glucose-limited conditions led to the accumulation of unique mutations when compared to control cultures, particularly in themraZ/fruRintergenic region and theelyC gene, suggesting changes in peptidoglycan and enterobacterial common antigen (ECA) production. These findings highlight the physiological and genomic adaptations ofE. colito microgravity, offering a foundation for future research into the long-term effects of space conditions on bacterial evolution.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Nikel, Pablo Ivan (Ed.)ABSTRACT The bacteriumAcinetobacter baylyiis a model organism known for its extreme natural competence and metabolic versatility. It is capable of taking up environmental DNA at a high rate across all growth phases. The type strain ADP1 was created by random mutagenesis of a precursor strain, BD4, to prevent it from forming cell chains in culture. ADP1 has since been distributed between research groups over several decades and acquired subsequent mutations during this time. In this study, we compare the genome sequences ofA. baylyiBD4 and its modern descendants to identify and understand the effects of mutations acquired and engineered during its domestication. We demonstrate that the ADP1 variants in use today differ in their competence, growth on different carbon sources, and autoaggregation. In addition, we link the global carbon storage regulator CsrA and a transposon insertion that removes its C-terminal domain specifically to changes in both overall competence and an almost complete loss of competence during the stationary phase. Reconstructing the history of ADP1 and the diversity that has evolved in the variants currently in use improves our understanding of the desirable properties of this experimentally and industrially important bacterium and suggests ways that its reliability can be improved through further genome engineering.IMPORTANCEAcinetobacter baylyiADP1 is a bacterial chassis of interest to microbiologists in academia and industry due to its extreme natural competence and wide metabolic range. Its ability to take up DNA from its environment makes it straightforward to efficiently edit its chromosome. We identify and characterize mutations that have been passed down to modern strains of ADP1 from the initial work in the 1960s, as well as subsequent mutations and genome edits separating strains in use by different research groups today. These mutations, including one in a global regulator (CsrA), have significant phenotypic consequences that have affected the reproducibility and consistency of experiments reported in the literature. We link a mutation in this global regulator to unexpected changes in natural competence. We also show that domesticatedA. baylyistrains have impaired growth on a variety of carbon sources.more » « lessFree, publicly-accessible full text available August 19, 2026
-
CRISPR-associated transposons (CASTs) are RNA-guided mobile genetic elements that are widespread in bacterial genomes. Here, we describe the UltraCAST, a suicide vector with the Vibrio cholerae Type I-F CAST system and Golden Gate assembly sites with fluorescent protein gene dropouts for guide RNA and a mini-transposon cargo cloning. We show an example of UltraCAST genome editing by disrupting a gene in the chromosome of Serratia symbiotica CWBI-2.3T, a culturable relative of aphid endosymbionts. The UltraCAST can be used to flexibly insert DNA into specific genomic sites and facilitates testing this genome editing platform in non-model bacterial species that lack genetic tools.more » « lessFree, publicly-accessible full text available August 2, 2026
-
Free, publicly-accessible full text available July 1, 2026
-
Naturally competent bacteria can be engineered into platforms for detecting environmental DNA. This capability could be used to monitor the spread of pathogens, invasive species, and resistance genes, among other applications. Here, we create Acinetobacter baylyi ADP1-ISx biosensors that detect specific target DNA sequences through natural transformation. We tested strains with DNA sensors that consisted of either a mutated antibiotic resistance gene (TEM-1 bla or nptII) or a counterselectable gene flanked by sequences from the fungus Pseudogymnoascus destructans, which causes white-nose syndrome in bats. Upon uptake of homologous DNA, recombination restored antibiotic resistance gene function or removed the counterselectable gene, enabling selection of cells that sensed the target DNA. The antibiotic resistance gene and P. destructans biosensors could detect as few as 3,000 or 5,000,000 molecules of their DNA targets, respectively, and their sensitivity was not affected by excess off-target DNA. These results demonstrate how A. baylyi can be reprogrammed into a modular platform for monitoring environmental DNA.more » « lessFree, publicly-accessible full text available July 18, 2026
-
Free, publicly-accessible full text available March 21, 2026
-
Didelot, Xavier (Ed.)Organelles and endosymbionts have naturally evolved dramatically reduced genome sizes compared to their free-living ancestors. Synthetic biologists have purposefully engineered streamlined microbial genomes to create more efficient cellular chassis and define the minimal components of cellular life. During natural or engineered genome streamlining, deletion of many non-essential genes in combination often reduces bacterial fitness for idiosyncratic or unknown reasons. We investigated how and to what extent laboratory evolution could overcome these defects in six variants of the transposon-freeAcinetobacter baylyistrain ADP1-ISx that each had a deletion of a different 22- to 42-kilobase region and two strains with larger deletions of 70 and 293 kilobases. We evolved replicate populations of ADP1-ISx and each deletion strain for ~300 generations in a chemically defined minimal medium or a complex medium and sequenced the genomes of endpoint clonal isolates. Fitness increased in all cases that were examined except for two ancestors that each failed to improve in one of the two environments. Mutations affecting nine protein-coding genes and two small RNAs were significantly associated with one of the two environments or with certain deletion ancestors. The global post-transcriptional regulatorsrnd(ribonuclease D),csrA(RNA-binding carbon storage regulator), andhfq(RNA-binding protein and chaperone) were frequently mutated across all strains, though the incidence and effects of these mutations on gene function and bacterial fitness varied with the ancestral deletion and evolution environment. Mutations in this regulatory network likely compensate for how an earlier deletion of a transposon in the ADP1-ISx ancestor of all the deletion strains restoredcsrAfunction. More generally, our results demonstrate that fitness lost during genome streamlining can usually be regained rapidly through laboratory evolution and that recovery tends to occur through a combination of deletion-specific compensation and global regulatory adjustments.more » « less
-
Mienda, Bashir Sajo (Ed.)Engineered plasmids have been workhorses of recombinant DNA technology for nearly half a century. Plasmids are used to clone DNA sequences encoding new genetic parts and to reprogram cells by combining these parts in new ways. Historically, many genetic parts on plasmids were copied and reused without routinely checking their DNA sequences. With the widespread use of high-throughput DNA sequencing technologies, we now know that plasmids often contain variants of common genetic parts that differ slightly from their canonical sequences. Because the exact provenance of a genetic part on a particular plasmid is usually unknown, it is difficult to determine whether these differences arose due to mutations during plasmid construction and propagation or due to intentional editing by researchers. In either case, it is important to understand how the sequence changes alter the properties of the genetic part. We analyzed the sequences of over 50,000 engineered plasmids using depositor metadata and a metric inspired by the natural language processing field. We detected 217 uncatalogued genetic part variants that were especially widespread or were likely the result of convergent evolution or engineering. Several of these uncatalogued variants are known mutants of plasmid origins of replication or antibiotic resistance genes that are missing from current annotation databases. However, most are uncharacterized, and 3/5 of the plasmids we analyzed contained at least one of the uncatalogued variants. Our results include a list of genetic parts to prioritize for refining engineered plasmid annotation pipelines, highlight widespread variants of parts that warrant further investigation to see whether they have altered characteristics, and suggest cases where unintentional evolution of plasmid parts may be affecting the reliability and reproducibility of science.more » « less
-
Kaltenpoth, Martin (Ed.)ABSTRACT Mechanistic understanding of interactions in many host-microbe systems, including the honey bee microbiome, is limited by a lack of easy-to-use genome engineering approaches. To this end, we demonstrate a one-step genome engineering approach for making gene deletions and insertions in the chromosomes of honey bee gut bacterial symbionts. Electroporation of linear or non-replicating plasmid DNA containing an antibiotic resistance cassette flanked by regions with homology to a symbiont genome reliably results in chromosomal integration. This lightweight approach does not require expressing any exogenous recombination machinery. The high concentrations of large DNAs with long homology regions needed to make the process efficient can be readily produced using modern DNA synthesis and assembly methods. We use this approach to knock out genes, including genes involved in biofilm formation, and insert fluorescent protein genes into the chromosome of the betaproteobacterial bee gut symbiontSnodgrassella alvi. We are also able to engineer the genomes of multiple strains ofS. alviand another species,Snodgrassella communis, which is found in the bumble bee gut microbiome. Finally, we use the same method to engineer the chromosome of another bee symbiont,Bartonella apis, which is an alphaproteobacterium. As expected, gene knockout inS. alviusing this approach isrecA-dependent, suggesting that this straightforward procedure can be applied to other microbes that lack convenient genome engineering methods. IMPORTANCEHoney bees are ecologically and economically important crop pollinators with bacterial gut symbionts that influence their health. Microbiome-based strategies for studying or improving bee health have utilized wild-type or plasmid-engineered bacteria. We demonstrate that a straightforward, single-step method can be used to insert cassettes and replace genes in the chromosomes of multiple bee gut bacteria. This method can be used for investigating the mechanisms of host-microbe interactions in the bee gut community and stably engineering symbionts that benefit pollinator health.more » « less
-
McLysaght, Aoife (Ed.)The phenomenon of de novo gene birth—the emergence of genes from non-genic sequences—has received considerable attention due to the widespread occurrence of genes that are unique to particular species or genomes. Most instances of de novo gene birth have been recognized through comparative analyses of genome sequences in eukaryotes, despite the abundance of novel, lineage-specific genes in bacteria and the relative ease with which bacteria can be studied in an experimental context. Here, we explore the genetic record of the Escherichia coli long-term evolution experiment (LTEE) for changes indicative of “proto-genic” phases of new gene birth in which non-genic sequences evolve stable transcription and/or translation. Over the time span of the LTEE, non-genic regions are frequently transcribed, translated and differentially expressed, with levels of transcription across low-expressed regions increasing in later generations of the experiment. Proto-genes formed downstream of new mutations result either from insertion element activity or chromosomal translocations that fused preexisting regulatory sequences to regions that were not expressed in the LTEE ancestor. Additionally, we identified instances of proto-gene emergence in which a previously unexpressed sequence was transcribed after formation of an upstream promoter, although such cases were rare compared to those caused by recruitment of preexisting promoters. Tracing the origin of the causative mutations, we discovered that most occurred early in the history of the LTEE, often within the first 20,000 generations, and became fixed soon after emergence. Our findings show that proto-genes emerge frequently within evolving populations, can persist stably, and can serve as potential substrates for new gene formation.more » « less
An official website of the United States government
